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Laws governing the t r a n s m i s s i o n  of radia t ion energy  are  es tabl ished on the bas is  of which 
it  is possible  to calculate the dis t r ibut ion of flux densi ty  and absorbed energy  ove r  the th ick-  
ness  of an absorbing and d i spers ing  l ayer  i r rad ia ted  f r o m  both s ides at some definite angle 
of incidence. 

In [9] we have es tabl ished laws which govern  the attenuation of a diffuse radia t ion flux in ma te r i a l s .  
At the s ame  t ime,  in f ra red  heat  t r ea tmen t  and drying of food products  and other m a t e r i a l s  is effected by 
var ious  modes of i r radia t ion ,  namely  by two-sided or  one-s ided i r rad ia t ion  with a diffuse flux or with a 
wide para l le l  beam.  Typical  examples  of para l le l  i r rad ia t ion  a re  in f ra red  lamps with a parabol ic  m i r r o r  
in an open chamber ,  or so l a r  in f ra red  radia t ion  for  drying vegetables ,  fruit ,  cotton, peat,  etc.  Var ious  
s t ruc tu ra l  components made of radia t ion d i spers ing  m a t e r i a l  a re  also exposed to so la r  in f ra red  beams  
impinging at a continuously vary ing  angle. There fore ,  it is impor tan t  to know the laws which govern  the 
at tenuation of a radia t ion beam impinging on a ma te r i a l  at an angle. 

It does not appear  feas ib le  to apply here  known solutions to the equation of ene rgy  t r a n s m i s s i o n  for  
a nar row radia t ion beam through turbid media  [1, 2, 6-8, 10-14], because  they r e p r e s e n t  a specia l  case  
with, above all, no data available on the d i spe r s ion  indicatr ix  • and on the angular  pa t te rn  of the r a d i a -  
tion flux within a layer .  

The diff icult ies in obtaining these data a r i se ,  because  d i spe r s ion  of radia t ion by inhomogenei t ies  
in ma te r i a l s  under study is a m o r e  complex phenomenon than ord inary  d i spers ion  of radia t ion by par t ic les .  
In this case  the d i spe r s ion  cen te rs  may be not only colloidal  par t ic les  and densi ty f luctuations,  but also 
pores  and cap i l la r ies  randomly  dis t r ibuted in a body. 

The propagat ion of a na r row beam of radia t ion through peat,  wood, paper ,  food products ,  and other  
m a t e r i a l s  is pecul iar  in that i t  rapidly  and a lmos t  en t i re ly  diffuses (or d i sperses )  within a ve ry  thin layer .  
Exper imen ta l  studies [4, 9] have shown that the f rac t ion  of flux which passes  s t ra igh t  through a 0.1 m m  
laye r  of mos t  m a t e r i a l s  is less  than 5%. On the other hand, the hemisphe r i ca l  t r ansmi t t ance  of the s a m e  
spec imen  may  be as high as 40-50%. Such a rapid convers ion  of a para l le l  beam into diffuse radia t ion has 
to do with s t rong and mult iple d i spe r s ion  at var ious  optical  inhomogenei t ies  in the ma t e r i a l  layer .  

During para l le l  i r radia t ion ,  in a ce r ta in  zone adjacent  to the i r rad ia ted  sur face  of the ma t e r i a l  at 
' and a der iva t ive  diffuse flux qk" depth x there appear  two fluxes of s i m i l a r  intensi t ies:  a para l le l  flux qk 

In our case  the p rob lem concerning the attenuation of energy  fluxes q~ and qk is expedit iously solved by the 
d i f fe ren t ia l -d i f fe rence  method (discrete fluxes),  which has been developed by Schuster ,  Schwarzschi ld ,  
Duntley, Ambartsunyan,  et  al. 

We will consider  the p roces s  of energy  t r a n s m i s s i o n  by monochromat ic  radia t ion through a plane 
l aye r  of i so t rop ic  and se lec t ive ly  attenuating medium, width l. Pa ra i I e l  radia t ion beams  E~, i and E~,2 
impinge on a l aye r  f r o m  both s ides ,  respec t ive ly ,  both at angle 0 = a rc  cosp  (Fig. 1). On the d iag ram we 
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Fig. 1. Pertaining to the problem of 
a parallel  radiation beam impinging 
at some angle and traveling through a 
plane layer  of absorbing and d i spe r s -  
ing mater ia l  with an a rb i t r a ry  d i sper -  
sion indicatrix. 

have blown up a layer  element of thickness dx at depth x, its 
optical propert ies  will be character ized by determinate em-  
pirical  spectrum coefficients which do not require  that the 
dispers ion indicatrix and the spatial flux distribution inside 
the layer  be known explicitly. Such charac te r i s t ic  coefficients 
will be the spect ra l  absorptivity k x and dispersivi ty cr x with 
respec t  to parallel  i r radiat ion as well as the mean-angular  
absorpt iv i tykx,  "forward" dispersivi ty fx, and "backward" 
dispers ivi ty  s x with respect  to diffuse irradiation.  Unlike the 
fundamental charac ter i s t ics  k x and crX, the secondary  mean 
charac ter i s t ics ,  which can be determined experimentally,  con-  
lain the overall information about the spatial distribution of 
radiation energy inside a layer as well as about the absorptive 
and the dispersive properties of the material. Information 
about the unknown third characteristic XR(T ) and about the ir- 
radiation mode can be obtained through the special coefficients 
5 and m relating them to the fundamental optical absorption and 
dispersion characteristics as follows: 

s~=mas%, /,~. = mSs%.. (2) 

The auxil iary coefficients 6 and m, with the aid of which the mean charac ter i s t ics  of the mater ia l  are 
plotted, can be found f rom known relations (see [3, 5, 7, 13]). The proportionali ty fac tor  m, called the 
space distribution coefficient of incident radiation, is equal to the rec iproca l  of the mean cosine # = cos|  
of the incidence angle @: m = 1/~ .  When both beams impinge normal ly  to the surface of the volume or 
l ayer  element,  then m = 1. Fo r  a hemispher ica l  and perfect ly diffuse incident flux m = 2. 

Coefficients 5 s and 6f are numerica l ly  equal to the forward fract ion and the backward fraction, r e -  
spectively, of flux dispersed in the volume or layer  element with a dispersion indicatrix • when the 
incident radiation is contained within a solid angle w' -< 2~ with an angular intensity distribution Bh(w' ). 
We note that the sum of these two coefficients is always equal to unity: 5s + 6f = 1. 

According to Fig. 1, layer  dx is i r radiated at an angle | by opposing parallel fluxes q~, q'_ and op- 
posing diffuse fluxes q+, q_ of the dispersed radiation. 

Frac t ion  kxq ~ of each parallel  flux q+ and q'  is absorbed by layer dx, while fract ion u q '  is dispersed 
, .  - , k ~ .  

in all direct ions according to the B u g e r - L a m b e r t  lawo Moreover,  the fract ion 5s(rkqx = s~q' x of total d is -  
! o t  ! " S  persed radiation is dispersed backward, while the fract ion 6fo-xq x = ~xq 1 1 dispersed forward in the d i r ec -  

tion of the parallel  flux impinging on layer  dx. 

Now, for the parallel  fluxes q~ and q'_ we introduce the mean dispers ivi ty  in the forward direct ion 
' = f '  = f~ and in the backward direction s~ s '  ' f+ _ = = sx, for the diffuse fluxes we introduce the mean ab- 

sorptivi ty k+ = k_ = kx, the mean forward dispers ivi ty  f+ = f_ = f;v, and the mean backward dispers ivi ty  s+ 
= s_ = s~.. 

Assuming that m+ = m_ = m _~ 2 and 5+ = 6_ = 6 -< 1, with (1) and (2) taken into consideration,  we can 
set  up the following sys tem of equations for  q~,  q ' ,  q+, and q_: 

dq~ 1 e~ , 
dx ~-- -  ~ -  (k~,+a~)q+-- I ~ q+; 

dq- 1 e~ 

dx ~ (k~,+~) q" =---~- qk; 

dx =--(k"TsO q+ s~q~- <:+ 7- q;-; 

dx " = - -  (~+sD q_+ s~q++ q'; + ~ -  q_, 

(3) 

(4) 

(5) 

(6) 

with t* = cos O. 
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Multiple dispersion in a plane layer i r radiated with a parallel beam is taken into account by the sys -  
tem of two equations, (5) and (6) re fe r red  to dispersed fluxes, which supplement the B u g e r - L a m b e r t  law 
(3)-(4) of attenuation of parallel  radiation. The boundary conditions will be 

q+ (x=0)=E;,~, q+(x -o)-o,  

q'_(x = l) = E~,~, q_(x = l) = O. 

The solution to sys tem (3)-(6) with boundary conditions (7) is 

(7) 

q+=E~,Iexp - - - -  x , 

[" ] q' = e i . ~  exp --  ~ (l--x) , 

8~ l) E'~,, {C2 [exp(--L~x)--lI~exp(Lxx)]@Cll.Ir~exp(-- T 
q+ = 1-- W~ 

} ( ' )  - - - - X  • [exp (L~x)--exp (--Lxx)] - -  E'x, tC z exp 

+ ~_v~ 

• [exp (--Lxx)--V~ exp (L~x)] --E~,2 C 1 exp 2 ~ -  (t--x) ; 

" E~,2 {C 2 [exp {-- Lx (l-- x)} -- T~ exp {Lx (l--x)}] 
q-= i - ~  

-~, C1~'~ exp ( - -  ~ l)[exp{L~(l--x)}--exp{--L~(t--x)}]} 

E;,~ {Co~ [exp {L x (I--x)}--exp {-- L~ (I-- x)}] --E'~'uC2exp [ - - ~ -  (1--x)] + 1 - - T ~  " 

(8) 

(9) 

(10) 

(11) 

where 

and CI, 
distribution of fluxes q+, q_ at depth x and which account for the mode of layer irradiation: 

c l  = ~; ~'~ - sl 8~ + ~K s~ = ( 1 - 6 f ) ( m ~ -  1) i .  
e 2 -- p~L~ 1 -- p2KZ 

C~ = ~tf'~,~ + f~.e~+ ~s'~s~ = (l+mp) fiA+mp~(l--26t) A 2 ; 
82 . 2 r 2  z - - ~  L~ l--tz2K 2 

K=m ]/(i--A)[1+A(1--26,)]  _ Lx 
8~ 

�9 ~ = / ~  exp (--Lxl); (12) 

C 2 are parameters  which describe the optical properties of the medium as well as the spatial energy 

(13) 

(14) 

(15) 

Both L x and Rk. o are related to the decay factor  eX and to the life expectancy of a quantum A = ~X 
/ e  x according to 

L~=me x ],/-~1 -- A) [1 +A (1-- 28f)] V'k~ ~+2sx) ,  

R~. = 1 - 6 l i t - U ( 1  -- A) [1 + a  (1-- 28s)] 
(1--8~) A 

(16) 

(17) 

based on Eqs. {1)-{2). 

With the aid of expressions (8)-{17) based on mean character is t ics ,  without information about • ) 
and about the spatial distribution of radiation energy in the layer , one can determine the monochromatic 
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diffuse radia t ion fluxes at depth x in a m a t e r i a l  l ayer  of thickness l with an a r b i t r a r y  d i spe r s ion  indicatr ix  
and i r r ad ia ted  f r o m  both sides at an angle | These express ions  will be more  genera l  than those der ived in 
[13] for  the specia l  case of one-s ided i r rad ia t ion  with the energy  of per fec t ly  diffuse fluxes q+, q_ d i s t r i -  
buted uni formly  in space (m = 2). 

F o r  diffuse i r rad ia t ion  of a layer ,  express ions  (10) anal (11) s impl i fy  into express ions  obtained for  
this case e a r l i e r  in [9]. 

The total densi ty  vec to r  of monochromat ic  radiat ion flux has the s ca l a r  value 

q; (x)=(q+-- q2)+ (q+-- q_). (18) 

The quantity of radiat ion energy  per  unit t ime absorbed by a volume e lement  of thickness dx at depth 
x is de termined f r o m  the equation represen t ing  the law of energy  conservat ion  

w'~ (x) = ka (q++ q'_) + -k~ (q+-- q_) = k~E'~,o,B q- #xE~,o. (19) 

Express ions  (18) and (19) fo r  w~and q~become unwieldy for  the general  ease.  

When both impinging fluxes a re  equal, EX,' 1 = E X,2' = E,, then the fo rmulas  for  q~ and w~ become much 
s imple r :  

><{exp(--~z~x)+exp [ :  e;" (l--x)]} @k~fi;~{exp(--~- x)-i-exp [--@ (l--x)]}. (21) 

The quantity of energy  absorbed in a layer  of an infinite optical thickness is 

w'~(x)=~E'~[(1 i-R~)C~exp(--L~x)+(Cl-'C~.)exp(----~- t x) ]  

X )  " " *" -',-k~E'~ exp _ e~ = #~E'~ E~o+k~E~ E~,o2. 
�9 ~ t  

(22) 

Fo r  i r r ad ia t ion  at an angle | the thermorad ia t ion  cha rac t e r i s t i c s  Rk(| 2~r) = R~ and Tk(| 2~c) = T~ 
are  found f r o m  express ions  (8)-(11) in the case  of diffuse fluxes q+, q_ and para l le l  f luxes q+, q ' ,  r e s p e c -  
tively, with one-s ided i r rad ia t ion  (E~, 2 = 0). 

With the f rac t ion  of fo rward  flux q~, according to Buger ' s  law, T~ = exp ( - ek / / p )  and with the known 
expres s ions  for  T k and R X (see [3, 5, 7, 9]), one can wri te  down for  a l ayer  of ma te r i a l  with an a r b i t r a r y  
d i spe r s ion  indicat r ix  the following express ions  

(2a) 
(24) 

(25) 

R'~ = C2R~-- C~ (1-- TI~ Ta), 

T~ =C~ (T~-- TB ) -'- T B (1-4-CIR ~ , 
A~ --1--{C 2 (R~@T~--TB)-- C, [1-- T'B(Raq- T~)] +TB }, 

' r e f e r r e d  to i r rad ia t ion  by a para l le l  beam at which re la te  i ts  the rmorad ia t ion  cha rac t e r i s t i c s  R~, T~, A x 
angle | and RX, TX, A k r e f e r r e d  to i r rad ia t ion  by a diffuse flux. 

The spec t r a l  re f lec t iv i ty  of a layer  with an infinite optical thickness is 

R ' ~  = C 2 R ~  - -  Cl.  (26) 

Formu la s  of the (23)-(24) type (for no rma l  incidence p = 1) were  f i r s t  derived by Duntley [17], who 
exper imen ta l ly  demonst ra ted  the i r  applicabil i ty to paper.  Analogous fo rmulas  have been derived in [13, 19] 
for  the case  of pe r fec t  diffusion (m = 2) of d i spersed  fluxes q+, q_ inside the layer .  

For  the e x t r e m e  case of an only absorbing medium (o- x = 0, A = 0), C i = 0, C 2 = 0, and f rom (24) for  
p = I we have the known express ion  represen t ing  Buger ' s  law: 

T~ (% = 0) -- exp (--k~l). (27) 
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Fig. 2. a) Dimensionless parallel flux q*' and dis-  
persed fluxes q*, q*; b) spatial i r radiance due to 
dispersed fluxes E* 0 = q~ + q* and total spatial i t -  
radiance E* 0 = q~'~ q* + q~" as functions of the 
optical thickness kxl , a t  various values of the d is -  
persion factor  A: 1) 0.95; 2) 0.9; 3) 0.5; 4) 0.1. 

! 
All these formulas for q+, q_, q~, wx, and the expressions relating the mean character is t ics  kx, sx, 

fk' Lk with the basic character is t ics  kx, cr X, • make it possible to analyze the radiation field inside a 
plane layer  of mater ia l  i r radiated by a wide parallel beam. 

In Fig. 2 are shown the dimensionless magnitudes of fluxes q~ = q+/E~, q* = q / E '  generated by the 
o n A  l ~ * t  ~ - - ~" dispersion of opposing diffuse fluxes and the spatial i r radiances  E ~  ,~u ~X0, as functions of the dispersion 

character is t ic  A of the medium and of its optical thickness k~l in a semiinfinite layer under normal i r radiat ion 
= 1), for the special case of a symmetr ic  dispersion indicatrix (Sf = 0.5). All curves here have a complex 
shape, deviating from an exponential curve at small  optical thicknesses (kkl < 3) and approaching it at 
large optical thicknesses.  As kxl increases ,  at any value of A, the density of dispersed radiation q~ and 
the optical i r radiance E~0 both increase in the boundary zone, approaching their  maxima at cer tain definite 
values of kx/m, and then decrease again in some complex manner. 

The maxima of functions q*(x) and E~0 (x) can be located with the aid of relations (10) and (11) with 
(19) taken into account. In the case of a semi i~ in i te  layer we have for function E~0(x ) 

kfl~(E~o) ~tK--11 In [~tK (I+Rx~)C2 ] . 1 _ ~ C 1  (28) 

It is .evident f rom the diagram that, as A increases ,  the maxima of q* and E~0 shift toward large 
optical depths. The intensity of dispersed radiation increases  here continuously, moreover ,  owing to the 
dispersion of parallel  radiation, because the fluxes are spatially not discret ized within this range. The 
disperse i r radiance is mainly due to a single dispersion of a parallel  beam. There follows a range where 

, 
q+ and E~0 decrease quasiexponentialiy with increasing depth, where the dispersed radiation is essent ia l ly  
propagated outside the geometr ical  zone of a parallel  beam. Very deep inside the layer  (kkl >> kx/m) there 
occurs multiple dispersion, which ensures  additional pumping of energy into the flux in violation of Buger 's  
law of attenuation [7]. 

In the case of highly dispersive media (A > 0.9, curves 1) the spatial i r radiance EX, 0 and the flux 
density q+ at depths kkl > kh/m are determined mainly by the dispersed radiation flux. The parallel  flux 
q~ is smal le r  than the diffuse flux q+ and thus T~ << T x. Expressions (23) and (24) simplify then consider-  
ably: 

R~.~o [l--exp (--2L~l)] ~ C~, (29) 
R'~ ~ C2R~--C~=C~ 1--  R ~  exp (--2Lfl) 

(1--R~) exp (--Lx/) (30) 
T'z = C~T~=C~ 1--  R~= exp (-- 2L~l) 
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Fig. 3. Hemispherical reflectance RI{p; 2~) and 
hemispherical transmittance Tl(p; 2~): A) function of 
the optical thickness kl/ at fixed values of the dis-  
persion factor A = 0.1 (a) and 0.9 for (b), for p = 1; 
B) function of the cosine of the incidence angle p (p 
= cos | at kx/ = 1 and A = 0.9, obtained by various 
methodsi 1) according to formulas (23) and (24); 2) 
numerical method [20]; 3) numerical method (Hotte[) 
[18]; 4) diffusion method [20]; 5) diffusion method 
(Richards) [21]; 6) method of spherical harmonics 
[8]; 7) two-fluxes approximation [16]; 8) six-fluxes 
approximation [16]. 

Formulas (29) and (30), f irst  derived by Duntley [17] and later by Lathrop [19], make it possible, 
when p = 1, to relate the thermoradiation characteristics of the layer R~, T~ to the optical characteristics 
of the medium kl, kl,  s l ,  L 1 and to determine the parameters C1, C 2 on the basis of Rk, Tk and R1, T k 
measured under parallel and diffuse irradiation, respectively. 

A simultaneous solution of (23) and (24) with respect to LI/ for the case where exp ( - e l l / p )  ~ 0 yields 
the following expressions relating the optical characteristics of the medium to the thermoradiation char- 

' under parallel irradiation: acterist ics of the layer R~, T X 

L z =  1 In [(R~=--R'~)(R'~--C~)] 
7 -  ' 

#~ = [ c~-(R;~ 
C~+(R'~.--C,) ] L~, 

(31) 

(32) 

(33) 

993 



T A B L E  1. Va lues  of RX~u; 270 and Tk(u;  270 in the Case  of a S y m m e t r i c  I n d i c a t r i x  • kkl = 1, and A 
= 0.9, f o r  V a r i o u s  V a l u e s  of 

# = 0  #=0.5  p = O.l 
Method of determination 

R' x T' x R' x T' X R' x T i 

According to formulas (23) and 
(24) 

Numerical method [20] 
Numerical method (Hottel 

approximation) [183 
Diffusion method [20] 
Method of spherical harmonics 

(first approximation) [8] 
Method of moments (second 

approximation) [20] 

0,632 

0.635 

0,636 

0.600 

0.63 

0.63 

0,189 
0.182 

0.173 
0.220 

0.17 . 

0.18 

0.403 
0.393 

0.400 
0,398 

0.39 

0.39 

0.422 
0.415 

0.418 
0.431 

0.400 

0.415 

0,274 

0,267 

0,282 
0.273 

0.275 

0.27 

0.601 
0.593 

0.585 
o. 602 

o. 540 

0.59 

T A B L E  2. V a l u e s  of RX~(p; 27r) in  the Case  of a S y m m e t r i c  D i s p e r s i o n  I n d i c a t r i x  XX(3,), f o r  V a r i o u s  Va lues  

of h and ~z 

Method of determination 

According to formula (26) 
Numerical method [20] 
Numerical method (Ambart- 

sumyan) [2, 7] 
Diffusion method [20] 
Method of spherical harmonics 

(third approximation) [20] 
Method of moments (second 

approximation) [20] 

#=0 

0.051 
0.051 

A=0,1 

0.048 

0.049 

0.051 

p= 0.5 p= O,l 

0. 026 0,017 
0,024 0,016 

0.026 0.018 

0.025 0.017 

0.094 0.016 

#=0 

0,683 

0,684 

0,68 
0.659 

0.673 

0.671 

A = 0.9 

/,t = 0.5 

o, 518 
o. 508 

0.51 
0.517 

0.512 

o. 489 

/~ = 1.0 

o, 435 
0,415 

o. 43 
o. 426 

0.418 

0.403 

T A B L E  3. V a l u e s  of Rx,o~u; 270 in  the Case  of a F o r w a r d  E longa t ed  I n d i c a t r i x  Xk(7) = 1 + cos  T and N o r -  
m a l  Inc idence  {p = 1), f o r  V a r i o u s  V a l u e s  of h 

Method of determination 

According to formula (26) 
Numerical method [7] 
Differential-difference method 

[13] 
Method of moments [7, 10] 

0.4 

0.052 

0.04 

0.5 

0,073 
0.06 

0.6 

0.107 
0.09 

0.7 

0.145 
0.13 

0.05 
0.053 

0.08 
0.076 

0.11 
0.109 

0.15 
0.151 

0.8 

0.212 
0.20 

0.22 
0.223 

0.9 

0.338 
0.33 

0.32 
0.349 

The d e c a y  f a c t o r  e k  can be found f r o m  (23) and (24) but  only  in  the c a s e  of s m a l l  o p t i c a l  t h i c k n e s s e s ,  

w h e r e  T ~  > 0. 

In o r d e r  to e v a l u a t e  the a c c u r a c y  of the d e s c r i b e d  p r o c e d u r e  f o r  a n a l y z i n g  the t r a n s m i s s i o n  of r a d i a -  
t ion e n e r g y  th rough  d i s p e r s i n g  and a b s o r b i n g  m a t e r i a l s  under  p a r a l l e l  i r r a d i a t i o n ,  va lue s  of Rk{p; 270, 
TX(p; 2v), and RX,o{p; 2rr) c a l c u l a t e d  by v a r i o u s  me thods  a r e  shown in F ig .  3A, B and in  T a b l e s  1 -3 .  It i s  
e v i d e n t  h e r e  tha t  the v a l u e s  of r e f l e c t a n c e  and t r a n s m i t t a n c e  ob ta ined  by  our  method  of d i s c r e t e  f luxes  
and by  n u m e r i c a l  me thods  of Hot te l ,  T ien ,  C hu rc h i l l ,  e t  al .  [18, 20] f o r  v a r i o u s  i nc idence  ang les  | v a r i o u s  
d i s p e r s i o n  c h a r a c t e r i s t i c s  of the m e d i u m  A, and v a r i o u s  op t i ca l  t h i c k n e s s e s  kxI d i f f e r  on the a v e r a g e  by 
1-2%. This  i n d i c a t e s  tha t  the  p r o p o s e d  method  i s  s u f f i c i e n t l y  a c c u r a t e  when app l i ed  to c a p i l l a r y - p o r o u s  c o l -  
l o i d a l  m a t e r i a l s .  

C u r v e s  1 (Fig.  3A) of Tx(p; 270 as  a func t ion  of kkl a t  A = 0.1 and 0.9, c a l c u l a t e d  by  f o r m u l a  (24), 
a g r e e  wi th in  1-2% wi th  c u r v e s  2, 3 ob ta ined  by  n u m e r i c a l  m e t h o d s  [18, 20] wi th in  the r a n g e  of op t i ca l  
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th icknesses  k?tl f r o m  0 to 3. Fo r  kxl > 3 curves  1 gradual ly  depar t  toward smal l  values  of T x and approach 
curve 8 r ep resen t ing  the s ix- f luxes  Chu-Church i l l  approximat ion [16]. The ref lec tance  as a function of kx/ 
ag rees  within 1-2% with the re la t ions  obtained by numer ica l  methods over  the ent i re  range of optical  thick-  
nesses .  

' = f(kx/) curve cal- It can also be seen in Fig. 3 that, with increasing dispersion (A > 0.i), the T x 
eulated by formula (24) for 5f = 0.5, m = 2, p = 1 deviates increasingly from the Buger exponential curve 
exp (-kx/). The curves of spatial irradiance EX, 0 in Fig. 2 also differ from the exponential curve exp (-kx/}. 
When the dispersion is weak (A < 0.i), the Buger-Lambert law can be applied to layer thicknesses up to 
k)l < 3. In this case the error in the determinatioh of T~neglecting dispersion is up to 5%, but only 3.2% 
for kkl = i and 4.2% for kkl = 2. With increasing dispersion and layer thickness, the error becomes much 
larger, which is explained by the increasing fraction of multiply dispersed radiation. Thus, with a strong 
dispersion A = 0.9, the error is less than 20% for kxl - 0.5 but already 75.5% for kxl = 3. 

According to Tables 2 and 3, the values of RX~(p; 27r) based on formula (26) for various values of A 
and # as well as various dispersion indicatrices (spherical XX(7 ) = 1 and the simplest forward elongated 
?(Zo(-/) = 1 + cos 7) agree within 1-2% with the results of numerical methods. 

Thus, the proposed method of using mean characteristics which do not require that the indicatrix 
• ) be known, makes it possible to determine the radiation inside capillary-porous colloidal or other 
radiation dispersing materials irradiated by a parallel flux at an incidence angle | In terms of accuracy, 
this method matches  the Ambar t sumyan ,  Hottel, and T i e n - C h u r c h i l l  numer ica l  ones. 

A 
k x 
cr x 
• 

fx 
s x 
R x 
T x 
A x 

Rx.o 
| 

v E x 
q+, q-  
q~, q" 
EX, 0 = q +  + q -  

X, 0' q+ + q- + q+ 
gX,e = k x + s x .  

N O T A T I O N  

is the d i spers ion  factor:  life expectance of a quantum; 
is the absorpt ivi ty ,  m- l ;  
is the d i spers iv i ty ,  m- l ;  
is the d i spe r s ion  indicatr ix;  

~s the mean  absorpt ivi ty ,  m- l ;  
is the mean  forward d ispers iv i ty ,  m- i ;  
is the mean  backward d ispers iv i ty ,  m- l ;  
is the re f lec tance  of plane layer ,  thickness l; 
is the t r ansmi t t ance  of plane layer ,  thickness l; 
is the absorbance  of plane layer ,  thickness l; 
is the re f lec tance  of l ayer  with infinite optical  thickness;  
is the incidence angle of radia t ion  flux (~ = cos |  
is the densi ty of monochromat ic  radiat ion impinging on a l aye r  at angle | 
a re  the densi t ies  of opposing diffuse fluxes inside a l ayer  at depth x; 
a re  the densi t ies  of opposing para l le l  fluxes inside a layer  at depth x; 
is the spat ia l  i r r ad iance  due to d i spe r sed  flux; 

is the total spat ia l  i r rad iance ;  
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